
Human-Computability Boundaries

Vijay Kothari1, Prashant Anantharaman1, Ira Ray Jenkins1,
Michael C. Millian1, J. Peter Brady1, Sameed Ali1,

Sergey Bratus1, Jim Blythe2, Ross Koppel3, and
Sean W. Smith1

1 Dartmouth College, Hanover, NH, USA
2 Information Sciences Institute, University of Southern California,

Los Angeles, CA, USA
3 Sociology Department, University of Pennsylvania, Philadelphia, PA, USA

Abstract. Human understanding of protocols is central to protocol se-
curity. The security of a protocol rests on its designers, implementors,
and, in some cases, its end users correctly conceptualizing how it should
work, understanding how it actually works, and predicting how oth-
ers will think it works. Ensuring these conceptualizations are correct
is difficult. However, a complementary field provides some inspiration
on how to proceed: the field of language-theoretic security (LangSec)
promotes the adoption of a secure design-and-development methodol-
ogy that emphasizes the existence of certain computability boundaries
that must never be crossed during parser and protocol construction to
ensure correctness of design and implementation. We propose supple-
menting this work on theoretical computability boundaries with explo-
ration of human-computability boundaries. Historically, computability
research has focused on understanding what problems can be solved by
machines or idealized humans—that is, computational models that be-
have like humans in principle but that are not subject to the natural
limitations that humans face in practice. Humans may not have inex-
haustible auxiliary resources, and they are often subject to a variety
of deficiencies, e.g., finite memories, reduced attention spans, limited
information, misperceptions, and cognitive biases. We argue that these
realities must be taken into consideration if we are to be serious about se-
curing protocols. A corollary is that while the traditional computational
models and hierarchies built using them (e.g., the Chomsky hierarchy)
are useful for securing protocols and parser, they alone are inadequate as
they neglect human-computability boundaries that define what humans
can do in practice. In this position paper, we introduce the notion of
human-computability, we advocate for the exploration and discovery of
human-computability boundaries, and we outline steps moving forward.

1 Introduction

Humans are integral to the conception of protocols, laying out the initial vi-
sion, creating the specification, implementing the protocol, and wittingly or un-
wittingly making use of it. Due to humans’ close and varied interactions with

2 Kothari et al.

protocols during design, development, and operation, we must—if we want such
interactions to persist and also want to secure protocols—account for humans’
intrinsic limitations in understanding protocols.4

The genesis of a protocol vulnerability often lies in some human failure or
deficiency, e.g., the copy-and-paste blunder that produced the recent Apple goto
fail vulnerability [5]. The designer may introduce mistakes or create the speci-
fication under incorrect assumptions. Or the implementor may fail to correctly
conceptualize the specification, e.g., due to cognitive constraints. Or perhaps
the user may misunderstand the protocol, driving them toward behaviors that
jeopardize security. (While some may not consider the previous example to be
a protocol vulnerability, it has the same form as one; it is a predictable failure
of the protocol design-and-development process, which can be used as a reliable
conduit for attack.)

Our thesis is that a whole class of vulnerabilities could be averted if
we better understood human limits to computability and took a prin-
cipled approach to protocol design and development grounded in such
an understanding.

In the remainder of this paper, we provide a brief primer on the field of
language-theoretic security (LangSec), suggest work to complement the LangSec
approach with a human-computability approach, discuss how human deficiencies
give rise to bugs, propose methods for understanding these human limits, and
finally conclude.

2 LangSec and Computational Models

Language-theoretic security (LangSec) [2] incorporates the theoretical insights
offered by language theory, automata theory, and computability theory into a
design-and-development methodology that averts common pitfalls responsible
for producing numerous protocol and parser vulnerabilities. It advocates sep-
arating the parser from the execution environment, modeling the parser as a
formal grammar, ensuring the grammar does not exceed certain computability
boundaries on an extended version of the Chomsky hierarchy, and ensuring that
the parser is a recognizer or more precisely a decider, i.e., it rejects all bad inputs
and accepts all good inputs. In essence, LangSec tells us how to design protocols
and parsers based on our understanding of the limitations of machines. That is
not to say that LangSec does not acknowledge or address human causes of proto-
col and parser vulnerabilities. On the contrary, Bratus et al. in their discussion
of exploit programming [3], note that many exploits are manifestations of in-
correct computability assumptions. LangSec aims to rectify these assumptions
within the design-and-development process. Furthermore, successful application
of LangSec principles requires reducing human error. For example, the parser

4 While the discussion in this paper focuses on protocols, the general notion of human
computability we present is also pertinent to software security (and perhaps broader
domains).

Human-Computability Boundaries 3

combinator toolkit Hammer [6] helps eliminate user error by assisting the imple-
mentor in creating a parser that matches the specification grammar. We contend
that, while LangSec is vital and has made great strides toward securing proto-
cols, it alone is insufficient. Specifically, there is a limit to what can be achieved
by considering traditional computability boundaries alone. (Of course, one might
argue this would not be a problem if we could eliminate the human from all parts
of the protocol life cycle—including design, development, and use; as far as we
can tell, we’re not quite there yet.)

We propose supplementing the field of LangSec with work that explores
human-computability limits. Common computational models, such as the Turing
machine are excellent for capturing what machines can do; however, they are,
in general, not well-suited to what actual humans can do with and especially
without aids. In practice, humans have finite memories—and often inadequate
foundational knowledge to understand protocol workings in comparison to ma-
chines. They have short attention spans. They are subject to cognitive biases and
often make reasoning mistakes in predictable ways. These deficiencies manifest
in coding bugs and user error, both of which endanger security.

We argue that we must acknowledge these human deficiencies, understand
why and how they occur, develop solutions to begin addressing them, and finally
we must update our protocol and parser design-and-development processes in
accordance with such findings. This is an initial position paper, but we believe
further inquiry along will go a long way in securing protocols and parsers.

3 Human-Computability Boundaries

Using an extended version of the Chomsky Hierarchy that differentiates between
non-deterministic and deterministic pushdown automata, LangSec recommends
staying within either the boundary of Turing-decidability (linear-bounded au-
tomata) or the stricter boundary of parser-equivalence decidability (determin-
istic pushdown automata), depending on the problem at hand. The exact class
boundaries for these decision problems are not part of the 5-class extended
Chomsky hierarchy, e.g., the Turing-decidability boundary lies at recursive lan-
guages. However, the extended Chomsky hierarchy is natural for humans to
interpret and allows sufficient expressiveness to still be useful in the design and
development of parsers and protocols.

Human-computability boundaries—the boundaries that specify what actual
humans, not “ideal” humans or machines, can do without some aid—are a dif-
ferent beast altogether. Fitting human-computability boundaries to an extended
Chomsky hierarchy is futile as there exist grammars within the class of regular
grammars—i.e., grammars that can be expressed with finite state automata—
that humans, in general, fail to conceptualize correctly. We do not know exactly
where these human-computability boundaries lie, but the discovery of them may
be instrumental in securing protocols and parsers. This observation is captured
in Figure 1. The ovals correspond to classes of grammars/automata/languages
in the 5-class extended Chomsky hierarchy. LangSec boundaries are drawn at

4 Kothari et al.

linear-bounded automata and deterministic pushdown automata, whereas the
oddly-shaped blob corresponds to a single idealized human-computability bound-
ary. If this boundary were representative of reality, we would want
to constrain ourselves to the intersection of the blob and the appro-
priate LangSec computability boundaries during protocol and parser
construction.

finite state machine

det. pushdown automaton

non-det.
pushdown automaton

linear-bounded automaton

Turing machine

Parser Equivalence
Decidability Boundary

Decidability
Boundary

Human-Computability
Boundary

Fig. 1. Human-Computatability and LangSec Boundaries.

In practice, however, things are more complex. We can imagine different
human-computability boundaries corresponding to different human roles and
protocol interactions. We can also imagine fuzzy boundaries where the uncer-
tainty comes from the variance of human attributes over a sub-population. We
might consider human deficiencies of a probabilistic nature and aim to have, say,
99% of users be unsusceptible to a given flavor of attack based on protocol mis-
conceptions; then, we may design and develop the protocol around this aim. If
we know a priori what tools the various actors have at their disposal, the model
we choose and boundaries we choose should take this into account. In short, the
model used to express human-computability boundaries should be rooted in the
protocol at hand, as well as the relevant sub-population and its capabilities.

Human-Computability Boundaries 5

4 What’s Next?

This inquiry provides preliminary insights that warrant further exploration,
along with other directions for future research. In this section, we briefly touch
on these threads.

4.1 Determinants of Human-Computability Boundaries

There are myriad factors that determine human-computability boundaries, e.g.,
memory, attention span, dual-process model of cognition, and bounded rational-
ity [4,7]. However, some will have a larger impact than others and some infor-
mation will be easier to use in addressing vulnerabilities that arise from human
deficiencies. That is, pragmatically speaking, the utility of exploring a determi-
nant rests on its salience to human-computability boundaries and whether the
information we can acquire about the determinant is actionable. For example,
one approach might be to extend the compliance budget work of Beautement et
al. [1] to a cognitive budget.

4.2 Usability Studies

Identifying the determinants of human-computability boundaries is insufficient.
We must also conduct usability studies to understand the interplay between
these determinants, human-computability boundaries, and security. Of course,
this is not a one-way process; usability studies also help with identifying new
determinants, which in turn guide new usability studies.

For example, an interesting genre of usability studies involves collecting con-
crete metrics for code complexity. Two classes of metrics are based on: (a) what
the programmer can readily observe in the code and (b) what is represented in
the abstract syntax tree (AST) for the program inputs in computer memory.
As we mentioned earlier, program inputs are handled by code called parsers.
Examples of metrics of the first type include lines of parser code and complexity
per line of parser code, e.g., how many atomic structures such as combinators
are used or represented in each line of code (on average or in the worst line).
Examples of metrics of the second type include AST depth, number of branches,
and tree balance.

4.3 Understanding Roles

In this paper, we considered three types of humans: the designer, the imple-
mentor, and the user. While we believe it is important to understand human-
computability boundaries for each of these roles, the tools afforded by the role,
the ideal “good” behavior associated with each role, and the importance of each
role in securing protocols, we have yet to adequately answer any of these ques-
tions. Additionally, it may be valuable to consider other roles or more nuanced
sub-roles.

6 Kothari et al.

4.4 A Theoretical Approach to Human-Computability Boundaries

While it may be infeasible to draw perfect or even close-to-perfect boundaries
for human-computability, understanding some limitations can go a long way in
addressing vulnerabilities in these spaces. In particular, it may be useful to de-
velop traditional computational models to capture human limitations regarding
finite-and-small states and/or finite-and-small memories predicated on usability
studies. While even these models will not neatly fit within the extended Chomsky
containment hierarchy used in LangSec, they would still be rooted in automata
theory, which is certainly convenient. After all, understanding the commonality
of two models of one type is generally easier than understanding the commonality
of two models of different types.

4.5 How Feature Creep—Beyond the Traditional Bug

In security, we commonly hear of unnecessary feature expansion as being the
cause of many software and hardware bugs—phenomena so widely recognized
that terms like feature creep and software bloat have been developed to describe
them. However, when one speaks of, say, feature creep, the focus is usually on
a software (or perhaps hardware) bug, not on vulnerabilities rooted in human
deficiencies. We contend that feature creep, by adding complexity to a protocol
or a program that makes it exceedingly difficult for the human to understand,
introduces predictable failures that can readily be exploited by the adversary.
That is, the complexity introduced with feature creep creates a “bug” in the
human that ultimately makes the software less secure. Therefore, we believe
analyzing feature creep through the lens of human-computability boundaries
or perhaps mismorphisms [7]—mismatches between interpretations— may be
illuminating.

5 Conclusion

We argued that security rests, in large part, on acknowledging and accounting for
human deficiencies in the design and development of network protocols. Existing
LangSec work defines theoretical computability boundaries along the extended
Chomsky hierarchy for which the decidability and parser equivalence decidabil-
ity problems are solvable. Accordingly, recommendations to stay within these
computability boundaries along with tools and other LangSec developments are
valuable in guiding secure protocol and parser construction. However, they alone
are insufficient. In this paper, we introduced the notion of human-computability
boundaries, highlighted the difficulty in understanding and defining them, mo-
tivated the need for further exploration, and suggested threads for future work.

Acknowledgement

This material is based upon work supported by the United States Air Force
and DARPA under Contract No. FA8750-16-C-0179 and Department of Energy
under Award Number DE-OE0000780.

Human-Computability Boundaries 7

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the United States Air Force, DARPA, United States Government or any agency
thereof.

References

1. Beautement, A., Sasse, M.A., Wonham, M.: The Compliance Budget: Managing
Security Behaviour in Organisations. In: Proceedings of the 2008 New Security
Paradigms Workshop. pp. 47–58. ACM (2009)

2. Bratus, S.: LANGSEC: Language-theoretic Security: “The View from the Tower of
Babel”, http://langsec.org, [Online; accessed 2-January-2019]

3. Bratus, S., Locasto, M., Patterson, M., Sassaman, L., Shubina, A.: Exploit pro-
gramming: From buffer overflows to weird machines and theory of computation.
{USENIX; login:} (2011)

4. Herley, C.: So Long, And No Thanks for the Externalities: The Rational Rejection
of Security Advice by Users. In: Proceedings of the 2009 workshop on New Security
Paradigms Workshop. pp. 133–144. ACM (2009)

5. Naked Security, Sophos: Anatomy of a “goto fail” Ap-
ples SSL bug explained, plus an unofficial patch for OS X!
(February 2014), https://nakedsecurity.sophos.com/2014/02/24/

anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/,
[Online; accessed 3-January-2019]

6. Patterson, M.: Parser combinators for binary formats, in C, https://github.com/
UpstandingHackers/hammer, [Online; accessed 4-January-2019]

7. Smith, S.W.: Security and Cognitive Bias: Exploring the Role of the Mind. IEEE
Security & Privacy 10(5), 75–78 (2012)

http://langsec.org
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://github.com/UpstandingHackers/hammer
https://github.com/UpstandingHackers/hammer

	Human-Computability Boundaries

